Downtown Napa provides a strong foundation for a robust, walkable environment. Its system of streets, sidewalks, trails and plazas contributes to Downtown’s pedestrian-oriented character, which is further enhanced by historical elements, gathering spots and urban features. This chapter provides guidance to improve all forms of transportation (i.e., multi-modal system) serving Downtown. An integrated circulation network will facilitate public transit, bicycling, and vehicle circulation and access in Downtown, while enhancing the pedestrian experience.

The transportation system proposed in this Specific Plan supports the buildout of Downtown, consistent with the preferred design elements, land uses and densities. The development and transportation strategies in Napa’s past planning efforts led to aggregated downtown blocks that were designed to accommodate then-modern retail malls and large-footprint developments. These strategies also separated streets into one-way couplets (or pairs of parallel one-way streets) to emphasize the movement of automobiles, maintaining efficient, though often confusing, travel for cars. The policies and recommendations in this Specific Plan build upon the multi-modal transportation improvements adopted in the City of Napa General Plan and seek to restore the Downtown’s historic walkable block pattern to support the vision. They also aim to return the streets to their original function of providing access and mobility for transit users, bicyclists and pedestrians, while balancing the needs of motorists, goods movement and emergency access.
6.1 OVERARCHING TRANSPORTATION AND PARKING POLICIES

This section establishes overarching policies that support the Specific Plan’s vision for Downtown to create an attractive, efficient and functional multi-modal transportation and parking system with a wide range of options for travel. The following policies bridge the gap between the broader implementation policies of the General Plan and the finer resolution needed to successfully guide development in Downtown over the life of the Specific Plan.

1. Ensure the Downtown’s transportation system is designed to enable comprehensive, integrated, safe access for users of all ages and abilities including pedestrians, bicyclists, motorists, transit riders and operators, emergency personnel, and truck operators.

2. Re-establish the Downtown’s historic block pattern and street grid by re-opening street closures when large blocks undergo redevelopment.

3. Convert existing one-way couplets of First and Second streets, and Third and Fourth streets, to two-way travel. Establish the conversion among the first capital projects implemented.

4. Re-establish vehicular travel on Coombs Street by converting the existing Coombs Street Plaza to a one-way, northbound street in the short term, two-ways in the long term, for vehicular travel between First Street and Pearl Street. This improvement significantly enhances vehicular circulation through Downtown and improves access to the Pearl Street parking structure from First Street.

5. Maintain all streets within Downtown at their current number of lanes, or fewer. Allow minor widening of right-of-way only to facilitate pedestrian and other non-auto-oriented mobility efforts, or as necessary to safely accommodate the appropriate emergency vehicles, trucks or buses.

6. Maintain the economic vitality of the downtown retail and entertainment uses by maintaining sufficient access and loading areas for commercial delivery vehicles.

7. Utilize Transportation Systems Management strategies and technology applications (i.e., traffic signal synchronization) within Downtown to maximize the effectiveness of existing transportation facilities rather than widening roadways or other expansion of facilities.
8. Utilize Transportation Demand Management strategies to reduce drive-alone automobile traffic by encouraging travel by carpool, transit, bicycling or walking. Transportation Demand Management programs apply to commercial and residential uses and include incentives and strategies for promoting carpooling, transit use, bicycling and other alternative travel modes.

9. Increase transit ridership and reduce automobile travel through appropriate land use planning, improved access to transit and exploration of new transit technologies.

10. Improve pedestrian and bicycle linkages and safety throughout Downtown, and expand the system for recreation and transportation for all ages by implementing a network of multi-use trails and on-street bicycle connections within Downtown’s greenbelts and waterways, and connecting to the regional/citywide network. Ensure that east-west and north-south routes are provided through Downtown to facilitate access to key destinations for pedestrians and bicyclists of all abilities.

11. Utilize public and private development opportunities to implement public streetscape and open space improvements to expand and connect to the network of pedestrian-friendly sidewalks, promenades, plazas, paseos and courtyards into and through development projects.

12. Manage parking resources in Downtown to ensure efficiency, encourage pedestrian activity, reduce development costs and improve the feasibility of developing smaller properties. Management of parking resources should be maximized prior to construction of new parking facilities.

13. Encourage a “park once” philosophy, where employees and customers can park in one location and visit many destinations within a walkable distance, to reduce vehicle trips within Downtown. Ensure this approach is practical and convenient through high-quality pedestrian facilities and amenities.
6.2 EXISTING ROADWAY SYSTEM

This section describes the existing roadway system within Downtown and the major highways and streets that provide regional access to Downtown. The roadway system establishes the framework for nearly every mode of transportation. Therefore, as a general principle, the roadway system needs to allow for a network that is broad enough to accommodate the needs of longer distance regional travel and fine enough to create direct and convenient routes for pedestrians.

EXISTING ROADWAYS AND CLASSIFICATION SYSTEM

The existing roadway classification system within and accessing Downtown is a combination of State Highways, arterials, collectors and local streets. Figure 6.1: Existing Circulation System illustrates the Downtown’s Existing Circulation System.

The City of Napa General Plan defines street classifications, which govern engineering design standards, traffic operation performance standards, and the unique function and characteristics of each street. Napa's street classification system is based on the functional classification hierarchy which orders streets in terms of their mobility and access functions. Key roadways within the vicinity of Downtown include:

State Highways

SR-29 is a four-lane, median-divided State Highway that primarily runs north-south connecting Napa to regional destinations such as Vallejo to the south and Calistoga and St. Helena to the north. SR-29 is located west of Downtown Napa, and can be accessed via the First Street interchange.

SR-121 is a two- to four-lane State Highway that extends from Sonoma County in the southwest, east through the City of Napa, then northeast beyond the Napa city limits. Within the vicinity of Downtown, SR-121 primarily runs north-south as Soscol Avenue from Imola Avenue to Silverado Trail, and then as Silverado Trail north to Monticello Road.

SR-221/Napa-Vallejo Highway (SR-221) is a north-south State Highway that becomes SR-121/Soscol Avenue at its intersection with Imola Avenue. There are two lanes in each direction divided by a raised median.

Arterials

First Street is a two-lane, undivided west-east arterial that extends as a continuation of Browns Valley Road to its terminus just east of Silverado Trail. In the Downtown area, between Main Street and California Boulevard, First Street is one-way in the westbound direction, forming a one-way couplet with the corresponding eastbound segment of Second Street.

Second Street is a two-lane, east-west arterial that extends from California Boulevard to Main Street. Second Street is a one-way street in the eastbound direction, forming a one-way couplet with the corresponding westbound segment of First Street.
FIGURE 6.1: Existing Circulation System
Third Street is a two-lane, east-west arterial roadway that extends from California Boulevard to Coombsville Road. Within Downtown, Third Street is one-way in the westbound direction between Randolph Street and Church Street, forming a one-way couplet with the corresponding eastbound segment of Fourth Street which extends from Church Street to Coombs Street.

Soscol Avenue extends from Trancas Street to Imola Avenue and is a four-lane, north-south arterial roadway within Downtown. There is a raised median between Maplewood Avenue (just north of Lincoln Avenue) and the Soscol railroad crossing. South of Downtown where the Silverado Trail merges with Soscol Avenue to Imola Avenue, Soscol Avenue is also referred to as SR-121.

Collectors
Main Street is a two-lane collector that runs north-south from Fifth Street to Pueblo Avenue. North of Pearl Street it is designated as a collector.

Coombs Street is a two-lane, north-south roadway that is discontinuous between First Street and Pearl Street. The southern segment extends from Imola Avenue to First Street and operates as a collector. The northern segment extends from Pearl Street north to Clinton Street and operates as a local street.

Pearl Street is a two-lane, east-west collector that connects Franklin Street to Soscol Avenue. Pearl Street crosses the Napa Creek just east of Coombs Street.

Sernary Street Seminary Street is a two-lane, north-south collector roadway that extends from Pine Street to Hayes Street. The segment between Laurel Street and Hayes Street is classified as a collector street, while the remaining segment is classified as a local street.

Crucial Corridors
The City of Napa General Plan identifies several routes that serve a particularly vital role in community-wide circulation and in providing accessibility to key community facilities as Crucial Corridors. The City’s key circulation policies have been established to reserve traffic capacity within these major thoroughfares for community-wide circulation. The following roads have been designated as Crucial Corridors:

- Soscol Avenue from Imola Avenue to Trancas Street;
- Silverado Trail from Soscol Avenue to Trancas Street;
- Jefferson Street from Imola Avenue to Trancas Street;
- Imola Avenue from Jefferson Street to Soscol Avenue;
- Lincoln Avenue from Jefferson Street to Silverado Trail; and
- Trancas Street from SR-29 to Soscol Avenue.
VEHICULAR CIRCULATION WITHIN DOWNTOWN

Accessing the Downtown Area
Regional access to Downtown Napa is provided by several State Highways including State Route 12 (SR-12), SR-29, SR-121 and SR-221. These highways connect Downtown with greater Napa County and the Bay Area. The primary local access gateways into Downtown from the surrounding neighborhoods and State Highway system are First Street, Second Street, Soscol Avenue and Jefferson Street. Access from the east side of Downtown is constrained by the Napa River and the limited bridge crossings at First and Third streets.

Downtown Napa One-Way Couplet System
An important feature in Downtown, and a focus for change, is the system of one-way streets highlighted by pairs creating one-way couplets. One pair of arterials, First and Second streets, connects SR-29 and central Downtown. A shorter pair of arterials, Third and Fourth streets, runs along the southern boundary of the Planning Area.

GENERAL PLAN ROADWAY IMPROVEMENTS

The General Plan identifies several transportation capital improvements that, when implemented, will affect travel patterns and access to Downtown. The transportation projects identified in the General Plan’s Circulation Element are anticipated to be implemented over the life of the Specific Plan or as mitigation for impacts of new development in the City and County of Napa. The General Plan projects in the vicinity of Downtown are identified below:

- Extend Solano Avenue to the south and connect with First Street;
- Widen the First Street Bridge over SR-29 to four lanes;
- Implement minor widening of Soscol Avenue between Silverado Trail and Lincoln Avenue to provide four through lanes with a center median, turn lanes and landscaping. Reserve right-of-way to provide for six lanes between Imola Avenue and Silverado Trail;
- Widen the southbound approach of the intersection of Silverado Trail at Soscol Avenue to provide one through-lane and two left turn lanes;
- Extend Saratoga Drive west to intersect with Silverado Trail;
- Complete the missing segment of Terrace Drive over Cayetano Creek;

The First and Third streets bridges serve as key gateways to Downtown.
• Extend Gasser Drive north to Soscol Avenue to connect with a new intersection north of the intersection of Soscol Avenue/Silverado Trail;

• Widen Silverado Trail to provide left turn lane improvements and modify bike lanes and shoulder between Soscol Avenue and Third Street; and

• Improve the five-legged intersection of Third Street/East Avenue/Coombsville Road/Silverado Trail to improve safety and increase vehicular capacity.

CONVERT ONE-WAY COUPLETS TO TWO-WAY STREETS

One-way pairs of streets, or couplets, were favored in the 1950s and 1960s to improve automobile traffic flow and reduce conflicts at intersections. Most one-way couplets, including the First and Second streets and Third and Fourth streets couplets in Downtown, were originally constructed as two-way streets, but converted to pairs of one-way streets in the 1960s as a strategy to increase vehicular traffic capacity. While the existing couplet system favors vehicular travel into and out of Downtown, the one-way streets can be confusing for some drivers and may impede access to some parking facilities, businesses and other Downtown destinations. Additionally, the existing one-way couplet circulation creates a circuitous route to access the downtown center, which can be confusing for those not familiar with the roadway system.

In support of the overarching goals of the Specific Plan to restore the historic Downtown street grid and improve circulation and access for all users, the Specific Plan includes the recommendation to convert the one-way streets within Downtown to two-way travel. Conversion to two-way travel was identified by the Specific Plan infrastructure subcommittee as a high priority improvement essential to the revitalization of Downtown. The street segments identified for two-way conversion include First and Second streets within the Planning Area, and the full extent of the existing one-way segments of Third and Fourth streets.

Figure 6.2: Proposed Specific Plan Circulation System shows the street segments where two-way conversion is proposed and Figure 6.3: Street Cross Sections with Two-Way Street Conversion illustrates the existing and proposed street sections.

The advantages of converting Napa’s one-way streets back to two-way travel include:

- Creating a less confusing circulation pattern that is more intuitive to all users;
- Providing direct routes to Downtown destinations, which may reduce travel time, fuel consumption, emissions and “driving around the block”;
- Improving emergency vehicle access to and from Downtown;
- Slowing traffic speeds through the Downtown commercial district due to fewer lanes in each direction;
Adopt a policy to balance the needs of trucks, buses and emergency vehicles. Designated truck routes should be “designed for” large vehicles, but mitigate their impacts on pedestrians and bicyclists.

One-way or two-way extension of Coombs Street from First Street to Pearl Street.

Implement the conversion of existing one-way couplets to two-way travel (See Figure 6.3 for two-way street configuration).
NOTE: The above concepts represent prototypical street cross sections for each roadway segment. Actual configuration and dimensions may vary at certain locations.
F I G U R E 6.3: S t r e e t C r o s s S e c t i o n s w i t h T w o - W a y S t r e e t C o n v e r s i o n (c o n t .)

NOTE: The above concepts represent prototypical street cross sections for each roadway segment. Actual configuration and dimensions may vary at certain locations.
FIGURE 6.3: Street Cross Sections with Two-Way Street Conversion (cont.)

NOTE: The above concepts represent prototypical street cross sections for each roadway segment. Actual configuration and dimensions may vary at certain locations.
CIRCULATION AND PARKING

- Slower speeds improve pedestrians’ perception of the street as barrier and provide a more comfortable environment for pedestrians and bicyclists;
- Increasing exposure of adjacent businesses to passing motorists;
- Increasing access to adjacent properties served by driveways;
- Improving wayfinding of bicycle routes;
- Improving the ease of transfers between bus routes for transit riders; and
- Increasing rider recognition and visibility of routes for the Napa VINE system transit operator.

There are some potential disadvantages to converting Napa’s one-way streets back to two-way travel, including the following:

- Intersection modifications to accommodate two-way traffic may eliminate some on-street parking spaces;
- Two-way streets increase the number of conflict points at intersections for vehicles and pedestrians, and may increase certain types of accidents;
- Conversion reduces the opportunity to increase traffic capacity, if ever needed;
- Two-way streets may be more difficult for large vehicles and fire apparatus to negotiate and may require longer red zones, minor loss of parking, and emergency vehicles may need to encroach into a portion of the opposing travel lane to pass other vehicles;
- With only one lane each direction, police control may be required during incidents or emergencies;
- Narrower two-way streets may require eliminating turn lanes, which could divert turning vehicles to use other streets;
- Two-way streets make it more difficult to synchronize traffic signals, an important Transportation Systems Management strategy in Downtown;
- Reduced fuel consumption and emissions connected with more direct routes may be offset by additional congestion at intersections; and
- Two-way streets may increase challenges for through traffic to pass vehicles that are illegally double-parked or delivery vehicles that use the travel lane for loading instead of designated loading areas.

While the potential disadvantages of two-way street conversion are important points to consider, ultimately the advantages of restoring two-way circulation within Downtown outweigh the disadvantages and better support the key circulation goals of the Specific Plan. Converting Downtown’s one-way streets to two-way travel is expected to require minor reconstruction of some intersection corners, roadway striping and signing improvements, traffic signal equipment modifications, and some improvements to the existing median at the intersection of Jefferson Street and First Street. However, the two-way conversion is not expected to require extensive reconstruction of the streets.
Future Operating Conditions

The traffic analysis prepared for the Specific Plan Environmental Impact Report (EIR) assessed the proposed one-way to two-way conversion of First, Second, Third and Fourth streets under existing and year 2030 cumulative conditions with build-out of the Specific Plan’s development program. Traffic volumes were adjusted to reflect the proposed two-way circulation and intersections were analyzed with assumed two-way operational modifications to signal phasing and timing. With full build-out and implementation of the Specific Plan recommendations, all of the intersections on the streets converted to two-way were projected to operate at acceptable levels of congestion (also referred to as Level of Service (LOS)), as defined by City standards.

COOMBS STREET PLAZA CONVERSION TO ONE-WAY STREET

The Coombs Street Plaza was created with the development of the Napa Town Center shopping center. Coombs Street was narrowed and closed to vehicular travel to provide a pedestrian plaza and entrances to the center’s retail anchors. This closure limits vehicular access to certain times of day, and blocks access to the northern part of Downtown and the City’s Pearl Street parking structure from First Street. Further, it limits vehicular access to businesses along the southern portion of Coombs Street Plaza. For visitors unfamiliar with the Downtown circulation system, the closure makes it challenging to locate the primary public parking for the Napa Town Center, which now requires a circuitous route of back streets to access the Pearl Street Garage. Furthermore, the one-way orientation of First and Second streets can confuse visitors if they miss Franklin Street and the route to the Pearl and Clay streets garages.

Re-establishing vehicular travel on Coombs Street between First Street and Pearl Street is recommended to reinstate the street’s original connectivity, improve visitor access to the Pearl Street Garage, create a pedestrian way through the Napa Town Center and facilitate emergency vehicle access.

There is currently sufficient City-owned right-of-way to establish a one-way connection. To establish...
FIGURE 6.4: Proposed Coombs Street Conversion to One-Way Northbound

*Requires redevelopment of adjacent buildings and acquisition of additional right-of-way.
two-way circulation, more public right-of-way would be necessary. Acquisition of right-of-way for a two-way extension could be implemented as part of a major development project consistent with the vision presented in the Specific Plan. Figure 6.4: Proposed Coombs Street Conversion to one-way northbound illustrates the potential configuration of the Coombs Street Plaza conversion.

With the proposed re-establishment of vehicular travel through the Coombs Street Plaza, there is an opportunity to improve downtown circulation by forming a north-south couplet with the one-way segments of Coombs and Franklin streets. Franklin Street runs parallel with Coombs Street, and currently includes a narrow northbound street section between First and Clay streets. With the potential opening of Coombs Street to automobile traffic—which would most likely be one-way northbound in the near term for better access to the Pearl Street Garage—it would be logical to complete the north-south couplet by reversing the direction of Franklin Street to one-way southbound between Clay and First streets. Alternatively, the north-south couplet could involve Franklin Street remaining northbound and Coombs Street running southbound. However, this does not improve access to the Pearl Street Garage. Engineering will be completed prior to installation to determine the appropriate direction of the potential couplet. Ultimately, at the time a major development project is proposed in the area, the City should evaluate opening Coombs Street to two-way circulation between First and Pearl streets to achieve optimal automobile, pedestrian and bicycle circulation based on the proposed development’s anticipated impact to these modes and functionality of the street section. The configuration of Franklin Street should also be evaluated. The City should acquire the right-of-way for two-way circulation if warranted by this evaluation.

STRATEGIES FOR ACCOMMODATING DELIVERY VEHICLES DOWNTOWN

Approach to Balancing Multi-modal Needs and Delivery Vehicles

Delivery vehicle access for the delivery of goods and services is essential to the function of Downtown commerce. However, accommodating the needs of delivery vehicles can be particularly challenging in a downtown environment where the compact pedestrian-oriented streets make it difficult for delivery vehicles to maneuver and access loading sites.

Designated delivery vehicle routes or non-designated routes with frequent delivery vehicles employ different designs for certain elements of the street and intersections so there is adequate clearance provided to accommodate the dimensions of delivery vehicles and their turning requirements. The General Plan designates the following delivery vehicle routes in the Downtown:
Soscol Avenue from Imola Avenue to Trancas Street; Third Street from Soscol Avenue to Silverado Trail; and Coombsville Road east of Silverado Trail.

Streets within Downtown must balance the needs of delivery vehicles, pedestrians, bicyclists, transit passengers and buses. Depending on the volume and type of delivery vehicles using the street, whether delivery vehicles frequently turn, and the designated function of the street, the Specific Plan recommends that the street either be “designed for delivery vehicles” or at minimum to “accommodate delivery vehicles.” The difference between streets that are “designed for delivery vehicles” and streets that “accommodate delivery vehicles” is explained as follows:

Streets Designed for Delivery Vehicles

Streets that are designed for delivery vehicles fully accommodate the type and size of delivery vehicle that commonly uses the street with enough maneuvering room to complete a right turn without encroaching into the travel lanes of opposing traffic, and enough turning area at intersection corners to avoid mounting curbs or sidewalks. These streets will need larger curb return radii, wider travel and turning lanes, or a corner island with a pedestrian refuge to mitigate the long pedestrian crossing distances needed to accommodate large delivery vehicles. This type of street includes those serving as bus routes.

Streets that Accommodate Delivery Vehicles

Streets of this type are principally designed for pedestrians, bicycles and passenger vehicles, but can accommodate delivery vehicle movements if needed. Delivery vehicles on these streets are usually infrequent (typically small delivery trucks) or very infrequent fire trucks that are permitted to encroach into opposing travel lanes when turning. These streets emphasize narrower lanes, smaller curb return radii and/or curb extensions, and shorter pedestrian crossings.

Whether the street is designed for delivery vehicles or accommodates delivery vehicles, its design should consider the physical requirements of the largest vehicle that uses the street with considerable frequency. Further, streets where commercial deliveries occur with significant frequency should provide adequate loading areas. These areas can be zones designated exclusively for loading or on-street parking areas that are reserved for commercial vehicle loading only during specified hours.

The Specific Plan proposes the following guidance for the provision of delivery vehicles in and within the vicinity of Downtown:

Designated Delivery Vehicle Routes on City Streets – Designated Delivery Vehicle Routes, such as Soscol Avenue and Third Street between Soscol Avenue and Silverado Trail, should be designed for delivery vehicles using Caltrans’ standards for lane width, clearances, curb return radii, etc. Measures to mitigate pedestrian and bicyclist impacts may be applied as necessary.

Caltrans Facilities – Caltrans typically ensures their facilities are designed for delivery vehicles but may apply different standards on a case-by-case basis in response to the context and constraints that exist.

Downtown – Downtown streets should accommodate freight trucks and emergency vehicles but designing for delivery vehicle movements should not conflict with the needs of pedestrians, bicyclists, transit users and motorists in Downtown.

City Streets Accessing Highways – Because delivery vehicles often access or depart Downtown via highways, streets accessing highway ramps experience more large delivery vehicles than other streets. These streets should be designed for delivery vehicles, particularly where they turn at intersections.

Bus Routes – From an operational perspective, transit circulation is similar to delivery vehicle circulation. Like delivery vehicles, buses require wider lanes and more generous curb radii for right-turn movements. Bus routes should be designed for buses using the transit agency’s standard vehicle type (usually a 40 foot coach bus).
Residential Neighborhoods – Streets in residential neighborhoods are principally for automobile, pedestrian and bicycle movements, and low volumes of delivery vehicles traffic. While occasional large delivery trucks and moving vans travel into neighborhoods, the more common delivery vehicle is a smaller-sized delivery truck. Low traffic volumes and speeds allow delivery vehicles to encroach when negotiating turns. Residential streets should be designed for passenger cars as the design vehicle, but should avoid designs that significantly hinder emergency vehicles. Street patterns should provide multiple routes into neighborhoods.

Measures to mitigate pedestrian and bicyclist impacts on delivery vehicle routes or streets designed for delivery vehicles include:

- Pedestrian median refuge islands on wide streets with crossings greater than 60 feet;
- Mountable curbs at corners to reduce crossing distance while allowing large and infrequent vehicles to mount the curb when turning;
- Corner island with a pedestrian refuge ("pork chop" islands) to break up long crossings at intersections with large curb return radii; and
- Intersection STOP bars set further back from the intersection to allow turning delivery vehicle to encroach into opposing lanes without encountering stopped vehicles.

Improvements to Downtown Streets

Other than the two-way conversion of the existing one-way street couplets and the Coombs Street extension between First and Pearl streets, no significant roadway modifications are proposed as part of the Specific Plan. However, opportunities to improve existing streets will arise as new development occurs and as conditions allow. Future development projects create the opportunity to reestablish the historic Downtown block pattern and street grid by re-opening street closures when large blocks undergo redevelopment. Future development projects also provide the opportunity to enhance streetscape features and urban design elements of existing streets. Specific design recommendations for street sections, streetscape elements, pedestrian facilities and architectural features are provided in Chapter 5 – Design Guidelines. Within the Design Guidelines, recommended design specifications for the following street elements are provided:

- Sidewalk curb extensions (bulbouts);
- Pedestrian crossing treatments;
- Sidewalk landscaping and street furniture; and
- Street lighting.

Other Circulation Improvements

Recommended Intersection Improvements Based on Traffic Study Findings

The traffic analysis prepared for the Specific Plan contains the following proposed mitigation measures. The measures are consistent with other studies in the vicinity of Downtown.

- Install traffic signal at the intersection of SR-29 Northbound Off-Ramp/First Street (improvement is warranted regardless of the changes and recommendations proposed in the Specific Plan); and
- Support the implementation of future intersection improvements to mitigate unacceptable traffic operations at the intersection of Silverado Trail/Third Street/East Avenue/Coombsville Road (improvement is warranted regardless of the changes and recommendations proposed in the Specific Plan).
Regionally Planned Transportation Improvements

The following are transportation projects that are planned or have been programmed by state or regional transportation agencies or the City of Napa that potentially affect access to Downtown.

- Napa County Transportation and Planning Agency (NCTPA) and Caltrans have programmed the improvements to the SR-12/29/221 (Soscol Avenue) intersection. This project includes construction of a two-lane southbound ramp connection from southbound SR-221 (Soscol Avenue) to southbound SR-12/29. The new connection will expedite the movement of traffic from southbound Soscol Avenue to southbound SR-29. This modification may result in an increase in the use of Soscol Avenue to access Downtown.

- The City of Napa’s General Plan includes a project to extend Solano Avenue south from F Street to First Street, as a four-lane arterial. This new roadway extension is expected to draw traffic from adjacent streets and relieve traffic on California Boulevard and result in less congestion accessing Downtown from SR-29.

ROADWAY SYSTEM RECOMMENDED ACTIONS

This section summarizes the recommendations designed to support the implementation of the Specific Plan’s vehicular circulation improvements.

1. Implement the conversion of the one-way streets (First, Second, Third and Fourth streets from Main Street to Jefferson Street) to two-way travel. This is a high priority project and should be implemented as one of the first phases of infrastructure improvements, coordinated with necessary utility improvements. As part of the two-way conversion, explore the potential to convert existing signalized intersections on First and Second streets to unsignalized control (two-way or all-way stop control) where appropriate. A detailed signal warrant analysis and safety evaluation should be performed prior to any modifications to intersection traffic control.

2. Adopt the policy requiring the design of streets within Downtown to balance the needs of delivery vehicles, pedestrians, bicyclists, transit passengers, buses and automobiles, and designating streets to be either “designed for delivery vehicles” or designed to “accommodate delivery vehicles.” Streets designed for delivery vehicles should consider implementing measures to mitigate impacts on pedestrians and bicycles.

3. Implement the mitigation measures identified in the Downtown Napa Specific Plan Draft Environmental Impact Report and in other studies to install a traffic signal at the intersection of SR-29 Northbound Off-Ramp/First Street.

4. Support the implementation of the mitigation measures identified in the City of Napa General Plan to improve intersection operations at the intersection of Silverado Trail/Third Street/East Avenue/Coombsville Road.

5. Construct the extension of Coombs Street between First and Pearl streets to improve access to the Pearl Street Garage, create a pedestrian way through the Napa Town Center on public right-of-way and facilitate emergency vehicle access. This may be implemented through the acquisition of land from the Napa Town Center shopping center or as part of a future development project.

6. Consider changing the way in which congestion is measured within Downtown to consider the effects to all roadway users rather than just motorized vehicles. This can be done by modifying the current General Plan measure of vehicular LOS at signalized intersections within Downtown (bounded by Soscol Avenue, First Street, Jefferson Street and Third Street) from average controlled delay to average travel time along the corridor to conform to the revised Urban Streets methodology of the 2010 Highway Capacity Manual. Additionally, establish LOS standards based on the 2010 Highway Capacity Manual’s multi-modal LOS methodology to evaluate impacts in Downtown.

7. Explore potential to convert existing two-way stop control to four-way stop control at the intersection of Coombs Street and Division Street, if warranted.
6.4 TRANSPORTATION SYSTEMS AND DEMAND MANAGEMENT

BENEFITS OF TRANSPORTATION SYSTEMS MANAGEMENT

Transportation Systems Management is a term for a broad range of strategies that makes existing transportation more efficient. Although Downtown has relaxed automobile LOS standards, and presently does not experience much traffic congestion, Transportation Systems Management has become an important and necessary piece of transportation planning as the City recognizes that it cannot widen roads without impacting pedestrians, bicyclists, transit users, the environment and the character of Downtown. Transportation Systems Management uses both “supply” and “demand” side strategies to get the most vehicular capacity out of existing roadway systems without adding new lanes, and to shift travelers to other modes to reduce the demands on the system. Technology plays an important role in Transportation Systems Management in terms of managing traffic and providing traveler information.

Transportation Systems Management Recommendations for Downtown

The following includes Transportation Systems Management strategies that are in use in the City of Napa as well as other recommendations for application in the Downtown area as part of this Specific Plan effort.

Synchronize Traffic Signals and Utilize Traffic Management Center to Optimize Traffic Flow

In 2004, the City of Napa upgraded its traffic signal controllers and installed a new central signal system and remote traffic management capability. The City optimized the signal timing within two corridors that affect Downtown, the central segment of Soscol Avenue and the Downtown area. The use of new technologies, such as computerized traffic signal systems, can reduce greenhouse gas emissions as well as improve driving conditions. The City of Napa has already invested in this technology within Downtown and can continue to monitor and adjust traffic signal control as a primary Transportation Systems Management measure.

Information Systems to Improve Travel Efficiency

Consistent with the strategies presented in Napa County Planning and Transportation Agency’s (NCPTA) “Napa’s Transportation Future”¹ the Specific Plan recommends the provision of traveler information to improve the efficiency and convenience of traveling to or within Downtown.

¹ Napa’s Transportation Future, A Strategic Transportation Plan for The Napa County Transportation and Planning Agency, Horizon Year 2035, April 2009
This recommendation is made because people choose their travel modes based upon past behaviors, and when better information about mode options is readily available then people may choose to regularly use another mode of travel or choose to travel at a different time. Information systems that may be implemented in Downtown include:

- Roadway congestion information using electronic message signs, web sites and phones for travelers to access information on incidents, best routes and estimated travel time to reach the traveler’s destination;
- Transit arrival information using signs, web sites and phones which report how long until the next bus arrives; and
- Parking wayfinding and availability information using static and electronic signs which direct drivers to available parking and identify the amount and price of the available parking. A parking information system is recommended in the Specific Plan’s parking section.

TRANSPORTATION DEMAND MANAGEMENT

Transportation Demand Management refers to strategies to reduce automobile traffic to improve air quality and reduce traffic congestion and, perhaps most importantly, delay or eliminate the need to construct costly roadway capacity projects which impact pedestrians and bicyclists. Transportation Demand Management has become increasingly important in maintaining acceptable traffic LOS in Napa County. This section describes strategies with a goal to manage and reduce the demand for travel, particularly by single occupant vehicles and during peak periods.

One of the most effective Transportation Demand Management strategies is to reduce the need for vehicular travel through efficient land use and transportation planning. The type of development encouraged in the Specific Plan – compact downtown uses in a “park once and walk” environment, and mixed-use high-density residential and commercial – is proven effective in reducing automobile travel.

Transportation Demand Management Strategies for Downtown

Transportation Demand Management is a constantly evolving enterprise. Programs are usually encouraged or required by the City, but to be effective need to be developed, monitored and continuously refined by employers or collectives.
of employers collaborating as a Transportation Management Association. The following strategies suggested in NCTPA’s “Napa’s Transportation Future” are relevant to Downtown and may be included in a toolbox of strategies that Downtown employers may consider.

Employer Based Transportation Demand Management Programs
Work with major employers (work sites with 50+ employees) to encourage workers to use alternative transportation modes by providing viable options for traveling to work and making mid-day trips while at work. Emphasize large employers and concentrated worksites (such as Downtown business centers and shopping centers), especially those whose workers are lower wage earners and thus more likely to commute from out of County.

Parking Pricing Strategies
When parking levels increase to unacceptable levels with time restrictions and strong enforcement, consider adopting policies that institute parking pricing strategies to encourage workers to use alternative transportation modes by charging for parking at worksites, or charging higher rates for long-term parking at prime public parking facilities. Parking pricing provides revenue and cost recovery, encourages more efficient use of parking facilities, reduces parking facility costs and land requirements, reduces vehicle traffic, and encourages use of alternative modes. Some of the following parking strategies are recommended in the Specific Plan’s parking section, but other strategies may be part of employer Transportation Demand Management programs:

- Charge employees directly for use of parking and offer comparable benefits for use of other travel modes;
- Charge higher rates and use shorter pricing periods at more convenient parking spaces (such as on-street spaces and parking near building entrances) to increase turnover;
- Use variable rates that are higher for peak locations and times;
- Apply performance-based parking prices;
- Set parking prices to equal or exceed transit fares;
- Unbundle parking from housing, so that apartment and condominium residents pay only for the parking spaces they need. Unbundling parking means that parking is sold or rented at a separate cost from housing. Occupants only pay for the parking spaces they actually need; thus, occupants save money when they reduce parking demand, and are not forced to pay for parking they do not need; and
- Encourage businesses to price, cash out and unbundle parking by providing rewards to those that do.
Other Transportation Demand Reduction Programs
A multitude of potential programs and services can be explored to manage traffic and parking demand within Downtown. The following options should be considered by employers, property management associations, and local and regional policy makers:

- **Car-sharing** refers to automobile rental services intended to replace private vehicle ownership. Car-sharing programs provide the occasional use of a rental vehicle without the financial obligation associated with vehicle ownership. Dedicated car-sharing vehicles are typically stationed in transit-oriented neighborhoods and at transit stations and commercial centers and are priced by the hour, day or mile. These services allow registered customers to identify and reserve an available vehicle for a desired period of time.

- **Ridesharing** refers to carpooling and vanpooling, where vehicles carry additional passengers, typically for commuting. Rideshare programs commonly provide carpool matching, vanpool sponsorship, marketing programs and incentives to reduce driving.

- **Commute Trip Reduction** programs give commuters resources and incentives to reduce their automobile trips. These programs typically include walking and bicycling encouragement and information, rideshare matching, encouragement of flexible work scheduling, promotion of bicycle parking and changing facilities, and commuter financial incentives such as subsidized transit passes, parking cash out and rewards/prizes for participation in carpool programs. Commute Trip Reduction programs may be encouraged or required by local, regional or state policies.

Car-sharing programs provide an opportunity to manage parking and traffic demand.
Chapter 6

Transportation Systems and Demand Management Recommended Actions

This section summarizes the recommendations for optimizing the efficiency of the Downtown’s transportation system through Transportation Systems Management and Transportation Demand Management.

1. Implement Transportation Systems Management strategies within Downtown to maximize the effectiveness of existing infrastructure, lessen demand for increased street system capacity, reduce the impacts and cost of expanding streets, help maintain a multi-modal LOS standard for all users, and enhance quality of life for those who use and benefit from the transportation system.

2. Continue to closely coordinate with the NCTPA and Caltrans to identify the most effective Transportation Systems Management and Transportation Demand Management strategies. Acknowledge that Downtown plays an important role in the region’s ability to meet greenhouse gas reduction goals and serves as the primary model for smart growth and urban transportation systems.

3. Continue to emphasize the use of technology to optimize traffic flow, including traffic signal synchronization and centralized traffic management. Upgrade older traffic control technology to link important corridors to the central management system. Technology should be considered the first means of resolving traffic congestion problems in Downtown.

4. Implement traveler information systems to improve access to and wayfinding within Downtown. Coordinate traveler information with Caltrans and NCTPA to use electronic message signs on the State Highway system to identify the best routes to access Downtown and to identify incident or construction related delays. At a minimum, maintain and update static wayfinding signs guiding visitors to Downtown (i.e., use of Soscol Avenue versus SR-29) and to public parking once in Downtown, as appropriate.

5. Explore feasibility and timing of implementing parking pricing strategies as outlined in this and the parking section of the Specific Plan.

6. Support car-sharing in Downtown by encouraging larger new developments to reserve parking spaces for car-share vehicles, and reserving strategic public on-street spaces for car-share vehicles as demand for such services increases.

7. Encourage the use of high occupancy vehicles (carpool and vanpool) through public programs for public employees and private employer-based programs, including preferential parking for high occupancy vehicles in both public and private parking facilities.

8. Encourage use of alternate fuel sources by coordinating transportation system improvements with new alternative energy infrastructure, such as electric vehicle charging stations.

9. Develop a Transportation Demand Management program that encourages new commercial development with greater than 50 employees to reduce peak hour travel and demands on the public parking supply.

10. Coordinate with VINE and NCTPA to enhance and promote the Commute Trip Reduction programs for employers in Downtown. These programs encourage more efficient commute travel by providing incentives for commuters to use alternative transportation options, such as walking, cycling and public transit.

11. Lead by example within Downtown through implementation of a comprehensive Commute Trip Reduction program for City employees and by sharing program resources, or encouraging similar programs, for County employees.

12. Support the “Car Free” tourism program of the Napa Valley Destination Council (NVDC) and NCTPA. The “Car Free” program provides traveler information for visitors to the Napa Valley so they can plan their trip using viable transportation alternatives to driving a car.
6.5 PUBLIC TRANSIT SYSTEM

OVERVIEW OF EXISTING TRANSIT SYSTEM

Napa Public Transit Services
The NCTPA operates Napa’s fixed route transit service (VINE) and demand-responsive or paratransit service. The VINE serves the cities of Napa, Santa Rosa, Calistoga, St. Helena, Rutherford, Oakville, Yountville, American Canyon and Vallejo. Downtown is served by multiple local routes and a regional route, all of which use the Pearl Street Transit Center. The VINE Go paratransit system provides demand-responsive service to customers including seniors and persons with disabilities within Napa County. Figure 6.5: Existing Transit System shows the existing public transit routes and location of bus stops within Downtown.

PROPOSED TRANSIT SYSTEM IMPROVEMENTS

Relocation of the Downtown Transit Center
The NCTPA plans to relocate the Pearl Street Transit Center, which is currently located at the southeast corner of the intersection of Coombs Street and Pearl Street, to a site on Burnell Street between Fourth and Fifth streets east of Soscol Avenue. The relocation is due to street closures as part of the Flood Protection Project as well as the need for more space for VINE’s pulse transfer system (where multiple bus routes arrive and depart at the same time). The new transit center will include NCTPA offices and meeting space, on-site parking and public art. Construction of the new transit center is expected to begin in 2013.

Opportunity to Restore the Napa Downtown Trolley
Trolley service was previously operated at varying 20 - 45 minute headways within Downtown. However, financing challenges, poor economic conditions and low ridership resulted in discontinuation of the service in 2009. Stops included Dwight Murray Plaza, the Napa Premium Outlets on the west side of SR-29, Embassy Suites, the Marriott Hotel, Safeway, Fuller Park, Historic Napa Mill, the River Terrace Inn and COPIA.

With implementation of the Specific Plan’s development program, associated increase in activity in Downtown, and interaction between Downtown and the COPIA Focus Area, the City and/or NCTPA should explore restoring the Downtown trolley service with a sustainable funding mechanism. A trolley service would reinforce a “park once and walk” environment and would support potential parking strategies such as lower cost remote parking for Downtown employees in the COPIA Focus Area if a private/public partnership provides public parking.

Furthermore, the relocation of the transit center to Burnell Street reduces the coverage of Downtown and a frequent trolley service would mitigate the impact of the relocation.

Potential re-establishment of the Downtown Trolley can facilitate the “park once and walk” environment as travel between the Downtown districts increases.
FIGURE 6.5: Existing Transit System
Potential Future Bus Rapid Transit Services

The NCTPA’s strategic transportation plan includes a strategy to actively explore development of a Bus Rapid Transit (BRT) system as a possible alternative to the development of the commuter rail system. BRT has similar characteristics to rail service and provides similar benefits. BRT improves upon conventional bus-based mass transportation to provide service that emulates rail service, but more cost-effectively. BRT is more flexible than rail and can operate along exclusive traffic lanes or in mixed traffic lanes on city streets.

There is no established timeframe for implementing BRT in Napa County; however, the City should coordinate with NCTPA as it explores this strategy further since Downtown would be a primary destination for BRT.

Potential Rail Service

Currently, there is no commuter rail system operating in Napa. The Napa Valley Wine Train, a privately operated tourism service, operates within Napa County, extending from the City of Napa north to St. Helena. The Wine Train’s main station is located in Napa on McKinstry Street just north of the Soscol Avenue/First Street intersection. In the past, the rail lines were part of a larger rail system that connected Napa to Vallejo in the south, Sonoma and Marin counties to the west, and Fairfield and Benicia to the east.

While no timeline is in place, the NCTPA’s strategic transportation plan (Napa’s Transportation Future) includes a strategy to explore commuter rail service. The NCTPA envisions scheduled passenger train service between the Vallejo Ferry Terminal and the City of Napa with service throughout the day. Initially this service might connect the City of Napa and employment centers in the southern part of the County. Rail service may be coordinated with bus service for travel to the north part of the County and with local shuttles connecting rail stations to jobs and residences. The NCTPA’s strategy includes the potential to connect regional and national train systems, providing access to Napa from anywhere. The existing railroad line is still used for limited freight service and, because of this, the railroad is limited to certain types of passenger vehicles. The City should continue to monitor this potential long-range transportation improvement because of the significance it would place on Downtown as a regional transportation hub, central destination and distribution center for tourism.

In the near future, Bus Rapid Transit may connect Downtown Napa to the rest of the Bay Area.
PUBLIC TRANSIT SYSTEM RECOMMENDED ACTIONS

This section summarizes the recommendations to support the implementation of the Specific Plan’s key strategies for transit improvements within Downtown.

1. Emphasize the importance of streetscape improvements and pedestrian connectivity as essential strategies for increasing transit ridership.

2. Work with NCTPA to identify sources of funding for bus stop upgrades and improvement of amenities.

3. Coordinate with NCTPA as it explores a strategy of Bus Rapid Transit as a cost-effective alternative to rail service. Downtown would be a primary destination for Bus Rapid Transit and would require additional infrastructure in terms of stations, potential exclusive rights-of-way, and operational modifications such as Transit System Priority signal systems and “queue-jumper” lanes allowing buses to bypass congestion at intersections.

4. Coordinate with NCTPA as it evaluates the potential for commuter rail service and identify Downtown Napa as a viable regional transportation hub, central destination and distribution center for tourism.
6.6 PEDESTRIAN AND BICYCLE CIRCULATION

EXISTING PEDESTRIAN FACILITIES

A key transportation feature of Downtown is its robust pedestrian circulation system comprised of short, or pedestrian-scaled, blocks with a continuous system of sidewalks on both sides of streets, short crossings on all approaches of most intersections, attractive streetscapes and amenities, and few major barriers to pedestrian travel. In general, major barriers may include physical features such as rivers or steep topography, interruptions in the street grid, the railroad, or wide, high volume and high speed streets or freeways.

There currently are sidewalks or pedestrian paths along nearly all of the streets within Downtown. Intersections are either stop or signal controlled, allowing for pedestrian crossing. At stop controlled intersections painted crosswalks are usually provided, while at signalized intersections painted crosswalks and pedestrian signals are typically provided at each leg of the intersection. Sidewalk curb extensions, often called bulbouts, are provided at some intersections. Bulbouts are an extension of the curb into the parking lane, which shortens the crossing distance for pedestrians. Generally, even at intersections without bulbouts, pedestrian crossings in Downtown are short (less than 60 feet).

EXISTING BARRIERS TO WALKING

While Downtown provides the key features that make up a robust pedestrian system, it also contains some barriers. Barriers to pedestrian circulation in Downtown include the Napa River and major high-traffic volume streets such as Soscol Avenue and Third Street. Crossings of the Napa River are located on First and Third streets, so north and south of these corridors there are significant gaps between river crossings. However, the First and Third streets bridges over the Napa River connect the two most important districts: the Downtown Core Commercial and the Oxbow Districts. Outside of these districts, the Plan Area is comprised mostly of residential or low-density and low-intensity commercial uses and the need to connect these uses is valuable but less critical. Further, there are existing or planned off-street multi-use paths paralleling the Napa River that connect to, or very close to, First and Third streets and provide an alternative pedestrian connection. The planned River Trail will provide an attractive north-south transportation route through Downtown, as well as a recreational facility.

An additional barrier to pedestrian travel is the past practice of aggregating smaller blocks to create single large development projects such as the Napa Town Center. While the shopping center itself provides a pleasant and attractive walking environment for customers, it makes it difficult for visitors to circulate (by any mode) through.

The Napa River can be both a barrier to walking and a pedestrian amenity.

Thermoplastic paving materials heighten visibility for crosswalks and help create a safe pedestrian environment.
or around the development by breaking up the intuitive nature of the historic street grid.

EXISTING BICYCLE CIRCULATION AND FACILITIES

The City of Napa bicycle network extends throughout the city, with many routes traveling directly through Downtown. The regional Vine Trail and citywide River Trail connect through Downtown and should be embraced as key recreational and economic assets to the area. The city has level terrain and a variety of scenic bicycle routes serving cyclists of varying experience levels. The City’s General Plan classifies bikeways according to the Caltrans classification system, which defines bicycle facilities as Class I, Class II or Class III bikeways. The City of Napa has implemented “bicycle boulevards” in Downtown. A bicycle boulevard is typically used on streets that lack width for bicycle lanes and are usually low volume and low speed streets parallel to busy arterials which have been identified as preferred routes for bicycle traffic. Bicycle boulevards are given a distinctive appearance using frequent uniform signs and pavement markings alerting motorists that the street is a priority route for bicyclists. An illustrated map of the existing and currently planned bicycle and pedestrian system within Downtown is provided in the Appendix A – Existing Conditions Report.

PROPOSED PEDESTRIAN AND BICYCLE SYSTEMS

This section summarizes currently planned pedestrian and bicycle system improvements within Downtown, as well as improvements proposed in the Specific Plan. As described above, the existing and currently planned bicycle and pedestrian system represents a moderately complete and well-connected network. The existing and currently planned bicycle network provides sufficient north-south and east-west connectivity within Downtown, and the vast majority of the existing Downtown streets include quality pedestrian facilities, with sidewalks on both sides and good pedestrian crossing facilities at intersections. For these reasons, the bicycle and pedestrian improvements recommended as part of the Specific Plan are primarily focused on enhancing and building on the quality system that is already in place, or currently planned, within Downtown (see Figure 6.6: Existing and Planned/Proposed Bicycle and Pedestrian Systems).

It is important to note that the design of the...
future Oxbow Commons bypass includes bicycle and pedestrian trails that will connect the Oxbow area to the eastern portion of downtown. This will provide the opportunity for bicyclists and pedestrians to cross Soscol through the bypass and will enhance the connectivity in and through Downtown.

Proposed Pedestrian System

The City of Napa General Plan identifies preferred standards for sidewalks in the form of standard street cross-sections. The standard for sidewalks and adjacent planting strips for arterial, collector and local streets without on-street parking is 10 feet of width with six-foot sidewalks and four-foot strips for landscaping. Where on-street parking is provided, the standards allow a five-foot six-inch wide contiguous sidewalk. While these standards are appropriate for most streets within Napa, in urban areas or in older parts of the city such as Downtown the standards presented in the General Plan are only guidelines and can be modified at the City’s discretion to better serve the pedestrian needs of a specific area.

Downtown streets serve a higher level of pedestrian activity and require wider sidewalks, especially to accommodate street trees in tree wells, sidewalk landscaping, street furniture, public art and sidewalk café space where restaurants may be located. There is great opportunity to enhance the pedestrian facilities and streetscape elements within Downtown and a key goal of the Specific Plan is to encourage additional investment in these facilities to provide a safe and inviting environment for all users. Chapter 5 – Design Guidelines includes recommendations for various pedestrian facility improvements including sidewalk design, crosswalks and bulbouts, street furniture, lighting, public art, and wayfinding signage on Downtown streets. In the guidelines, various Downtown streets are identified as “Core Streets” (First Street, Main Street) and “Secondary Streets” (Second Street, Third Street, Soscol Avenue, Pearl Street, Jefferson Street, Seminary Street) and recommended improvements are presented for each street type. A few of the key streetscape and pedestrian realm recommendations presented in Chapter 5 – Design Guidelines are summarized as follows:

- On streets in the Downtown Core Commercial and Oxbow Commerical districts, ensure that sidewalks have a width of at least 10 feet from building face to curb. The use of brick accents, ribbons, choice pavement scoring, etc. should be a consideration in the design for sidewalks.
- On Secondary Streets, ensure that sidewalks have a width of at least six feet and a curbside planting strip where space permits as described in Chapter 5 – Design Guidelines.
- Locate street trees and planter strips between sidewalks and the roadway to provide a safety buffer for pedestrians from traffic.
- Provide clearly marked minimum 10-foot wide crosswalks at all controlled

Flashing pedestrian crossing signs should be installed at mid-block crossings to increase pedestrian safety.
intersections and at intersections of key streets.

- Ensure that all crosswalks have ramps and warning strips that comply with Americans with Disabilities Act (ADA) standards.
- Provide bulbouts at intersections and pedestrian crossing locations to reduce crossing distances.

Sidewalks, pedestrian crossings and plaza areas are not the only components that form the pedestrian circulation system; multi-use paths and trails are also key pieces. Because these facilities serve both pedestrians and bicyclists as transportation corridors and recreational facilities, the recommended improvements to multi-use paths are presented in the section below discussing Specific Plan bicycle system recommendations.

Proposed Bicycle System

For the city’s bicycle system, the General Plan contains a number of policies related to street design to accommodate bike lanes and multi-use trails and to encourage bicycle facilities in new development. The General Plan’s proposed bicycle system was the basis for the Specific Plan recommendations. The recommended Specific Plan bicycle system, illustrated in Figure 6.6, was developed in coordination with City staff, the City’s Bicycle Policy Advisory Committee (BPAC), and citizenry with the goal of providing a well-connected and integrated network of on-street (Class II bike lanes and Class III bike routes) and off-street (Class I multi-use paths) facilities. The bicycle system within Downtown should facilitate an intuitive east-west and north-south circulation pattern with well-located connections to the existing and proposed recreational trails along the Napa River and through the Oxbow Commons Bypass Channel. The proposed Specific Plan bicycle and pedestrian system is described briefly below.

In the Specific Plan bicycle system, north-south bike travel is accommodated by Class II bike lanes along Soscol Avenue, Class II and Class III bikeways along Coombs Street, Class I multi-use trails along the Napa River and along a bicycle boulevard along Seminary Street. The bicycle boulevard continues northwest on Hayes Street. A potential Class I or Class II bikeway should be incorporated.
FIGURE 6.6: Existing and Planned/Proposed Bicycle and Pedestrian System

- **Proposed shared-use path replaces Southbound bike lane along Soscol Avenue from Third St to Vallejo St.**
- **Northbound bike lane will remain.**
- **Proposed pedestrian/bicycle bridge crossing Napa River from Third St, just west of Oxbow School.**
- **Shared-use trails through Oxbow Commons Bypass Channel per approved City/Flood concept plan.**
- **Proposed pedestrian/bike crossing Napa River.**
- **Potential Class I or Class II bridge**
 - **undercrossing below First Street along Napa Creek.**
- **Class I bridge**
- **Proposed pedestrian/bike crossing**
 - **with In-Pavement Flashers Signalized.**
- **Mid-Block Pedestrian/Bicycle Crossing Improvement** with In-Pavement Flashers Signalized.

Legend:
- Downtown Area
- Existing Class I Bike Path
- Planned/Proposed Class I Bike Path
- Existing Class II Bike Lane
- Planned/Proposed Class II Bike Lane
- Existing Class III Bike Route
- Planned/Proposed Class III Bike Route
- Existing Class III Bike Route - Bike Boulevard
- Pedestrian/Bicycle Intersection Improvements
- 0 700 ft 1400 ft 350 ft
into the Coombs Street extension through the Napa Town Center to provide a continuous north-south bicycle connection through the Downtown core.

East-west bike travel is accommodated with Class II bike lanes and Class III bike routes on Third Street and a portion of First Street, connecting to a Class I trail system along the Napa River. East of the Napa River, the bicycle facilities on First and Third streets connect to a series of Class II bike lanes along Silverado Trail, Soscol Avenue and Coombsville Road. A Class III route runs east-west through Downtown on Clay Street to Pearl Street, terminating into the Coombs Street north-south route. Segments of other Class III routes and bicycle boulevards also provide east-west travel through Downtown.

A system of multi-use Class I trails is provided along the Napa River, Napa Creek and the flood channel, connecting to the primary north-south trail along the railroad right-of-way parallel to Soscol Avenue. The Oxbow Commons Bypass Channel is planned to contain a network of trails which, when linked to the primary east-west bicycle corridors of First Street and Third Street, provide a fully integrated north-south and east-west system. Figure 6.6 illustrates locations where intersection improvements are proposed as well as grade-separations and crossing enhancements to support the interconnection of the Downtown network.

PEDESTRIAN AND BICYCLE SYSTEM RECOMMENDED ACTIONS

1. Implement the Specific Plan bicycle and trail system portrayed in Figure 6.6 and support coordination and consistency with the countywide/citywide bicycle planning efforts. The proposed system within Downtown includes, but is not limited to, the following improvements:

 • Provide Class I shared-use trail along west side of Soscol Avenue, connecting to the proposed Class I facilities through the Oxbow Commons Bypass Channel, to the north end of the River Trail near Third Street, and to the Vine Trail/Crosstown Commuter Path at Vallejo Street.

 • Extend the Class I facilities proposed along the Oxbow Commons Bypass Channel to the northwest along the Napa Creek to Main Street and Clinton Street. In addition, trails should extend east-west from McKinstry Street to Downtown via First Street and a path connection to Main Street.

 • Provide Class II bike lanes along Coombs Street from Division Street to Pearl Street, through Napa Town Center, assuming Coombs Street is reopened through Town Center. (If the proposed street extension is not reopened the Plan calls for a Class I path through the Town Center.)
CIRCULATION AND PARKING

- Classify Division Street as a Class III bike route between Coombs Street and the Class I shared-use trail along the west bank of the Napa River.

- Extend the Class II bike lanes along Third Street to the west from Main Street to Jefferson Street.

- Consider the development of enhanced mid-block pedestrian/bicycle crossing improvements with where the Class I shared-use trails cross Main Street and Pearl Street as illustrated in Figure 6.6. There are several obstructions in the way of the River Trail connection crossing First Street, such that a mid-block crossing would be unsafe. For this reason, the River Trail connection is recommended to go under the First Street Bridge to the Opera House Plaza. At mid-block crossings, explore the use of in-pavement flashers and crosswalk signage that flashes to alert drivers of crossing.

2. Encourage a bike-sharing program where bicycles are made available at unattended stations within Downtown for shared short-term use by individuals who do not own them. Publiclyshared bicycles provide an opportunity to increase bike ridership in Downtown.

3. Implement the recommended pedestrian amenities and streetscape improvements identified in Chapter 5 – Design Guidelines for First Street, Main Street, Second Street, Third Street, Soscol Avenue, Seminary Street and Jefferson Street.

4. When reconstructing street frontages, ensure new development adheres to the development standards for the pedestrian realm, as presented in Chapter 5 – Design Guidelines.

5. Require new development within the Specific Plan area to implement or contribute toward Downtown-wide improvements including streetscape and the Class I multi-use trail system that is planned along the Downtown greenways, creeks and flood channel improvements.

6. Require private development to expand public streetscape and open space improvements to expand and connect to the network of pedestrian-friendly sidewalks, promenades, plazas, paseos and courtyards into and through development projects.

7. Require private development to enhance open space and pedestrian connections, as envisioned in the Streetscape Plan in Chapter 5 – Design Guidelines, through careful placement and design of street trees, public art, street furnishings, bike racks, landscaping, signage, newsstands, street lights, paving and trash receptacles.

8. Implement Shared Lane Markings (SLM) (also known as “Sharrows”) on First and Second Streets in Downtown to alert motorists and bicyclists that they are encouraged to “share the road.”
Plan encourages the use of these principles and augments them with recent best practices in urban parking management.

EXISTING PARKING PLANNING AND REGULATORY FRAMEWORK

Parking in Downtown is comprised of on-street parking, off-street parking in public surface lots and parking structures, and private off-street parking lots serving individual land uses. Most block faces within Downtown have on-street parking spaces, as does a substantial portion of the streets east of the Napa River. On-street parking is well utilized (approximately 64 percent during weekday and 59 percent during weekend peak times based on a one-time survey in 2010) which underscores its importance as a valuable resource. The current parking supply in Downtown can sufficiently accommodate the existing parking demand. However, the importance of effectively managing existing and future parking resources is critical with ongoing concerns regarding poor access/circulation and degradation of some older parking facilities (particularly the Second Street Garage) as well as potential for increased parking demand with new Downtown development.

Adequate parking is a part of a balanced multimodal transportation system in a downtown context. When parking is ample and inexpensive it encourages driving to downtown, which can result in traffic congestion and impacts to the quality of the pedestrian experience. When parking is very scarce and/or costly it discourages visitors, and those who do drive circulate unnecessarily while searching for parking. Adequate, but not excessive, parking in downtown combined with parking management best practices serves those who choose to drive while incentivizing the use of transit, walking and bicycling. The Specific Plan encourages the use of these principles and augments them with recent best practices in urban parking management.

The Downtown area currently possesses a variety of surface parking lots and structures.
This section describes the planning and regulatory framework that guides the provision of parking in new development. For convenience in describing the different parking conditions that exist, Downtown is divided into three districts or areas:

- Downtown Parking Exempt District
- Downtown Fringe Area
- East of Soscol Avenue/Oxbow District

These districts are shown in Figure 6.7: Downtown Parking Districts. Parking conditions, regulations and standards, and land uses vary between the districts as described in the following sections.

Downtown Parking Exempt District

As described in Chapter 4 – Land Use Designations and Zoning Districts, the Parking Exempt (PE) District encompasses the Downtown core west of Soscol Avenue. The district has multiple objectives: 1) to establish public parking to create a “park once and walk” environment, 2) to relieve properties with on-site constraints from parking requirements, 3) to reduce the impact of private surface parking lots on the quality of the pedestrian environment, and 4) to generate revenue to provide the public parking supply. Development in the PE District is exempt from on-site parking and loading requirements except for residential uses. Without the constraints of providing parking, development can maximize land utilization and create a visually interesting pedestrian-scaled street frontage. Small parcels are feasible to develop without the burden of costly or infeasible underground or structured parking. The PE District is combined with a Parking Benefit Zone to fund public parking facilities as described later in this chapter.

Downtown Fringe Area

The Downtown Fringe Area is comprised of Downtown west of Soscol Avenue and outside of the PE District. This area is not as intensively developed as the Downtown core and is not exempt from on-site parking requirements. The area serves as a transition between the intensive commercial core and the adjacent residential neighborhoods. This area is a mix of lower intensity commercial and older residential. It is the first area to potentially absorb parking spillover impacts should the City institute changes in parking policy such as market pricing. This is a typical downtown growing pain which stabilizes over time, but the City should be prepared to adopt neighborhood protective policies until stabilization occurs.

East of Soscol Avenue/Oxbow District

The East of Soscol Avenue/Oxbow District (the Oxbow District) is comprised of the portion of Downtown east of Soscol Avenue that contains the Oxbow District, the land circumscribed by and west of the Napa River oxbow. This district is distinctly different than the Downtown Fringe Area. The development in this area is less dense and less historic than the area west of the river. Currently, the only public parking is on-street, and smaller lot sizes with zero lot lines make on-site parking largely infeasible. If more intensive development occurs in this district, such as redevelopment of the COPIA site, the Specific Plan’s parking strategies for this district fall between the public parking emphasis of the PE District and the conventional requirements applied to the Downtown Fringe Area.
FIGURE 6.7: Downtown Parking Districts

Blocks #1-32 comprise the Parking Survey Area from the 2002 Walker Parking Study

Parking Districts
- Parking District 1 - Downtown Parking Exempt District
- Parking District 2 - Downtown Fringe Area
- Parking District 3 - East of Soscol Ave. / Oxbow District
PARKING STANDARDS

Downtown Parking Requirements
The City of Napa Zoning Code specifies on-site parking requirements for new development, as well as exemptions and allowed variations in the requirements. The code identifies automobile parking and loading requirements for different types of land uses, identifies bicycle parking requirements, establishes the exemption of requirements in the PE District, and establishes and encourages the application of shared parking for mixed-use development with proper technical support.

The current City of Napa automobile parking ratios that follow in Table 6.1: Prior Downtown Automobile Parking Standards apply to new development and uses, expansions, and intensifications of use on all properties within Downtown, except as noted in subsequent sections.

The parking ratios for Downtown uses are lower than the citywide ratios. This is in recognition of the benefit of shared parking facilities, businesses and homes within walking distance, and access to public transit. Further, given that the Specific Plan goals and policies support a vision for Downtown as a higher-density, mixed-use area where residents and visitors are encouraged to park once and visit several destinations, it is appropriate to use reduced parking standards within Downtown. In support of these principles the following modified minimum parking requirements, as presented in Table 6.2: Downtown Automobile Parking Standards, are recommended for the Downtown. There are a few parking exceptions for uses within the PE District as noted in the following section.

The recommended minimum parking requirements for each land use category were developed by comparing the current City of Napa parking requirements for Downtown to the calculated parking demand by land use type, as determined through the shared parking analysis for the projected buildout of Downtown. Generally, the City’s requirements exceeded the peak parking demand. For this reason, the current Downtown parking ratios for residential, commercial retail and office uses were modified to better reflect the anticipated parking demand. The recommended parking requirements presented in Table 6.2 are supported by and function hand-in-hand with the Transportation Demand Management strategies discussed in previous sections, as well as with the parking management strategies presented in the following sections.

Parking Requirements within the Parking Exempt (PE) District
The following regulations apply both to new development and to changes of use in existing buildings within the PE District:

The Fifth Street Garage is one of four public parking facilities.
Parking Exemptions

No on-site parking or loading is required within the PE District except for residential and lodging uses. Development within the PE District may provide all or part of its parking on-site, as approved through the Use Permit process, if the location, orientation and design of the parking do not detract from the pedestrian-orientation of Downtown. If development is approved for on-site parking, the Parking Impact Fee (described later in the following sections) may be reduced proportionately.

Residential Standards

Parking for residential development in the PE District must conform to the standards in Table 6.1, which includes the following parking standards:

- Guest parking shall not be required.
- Off-site parking or use of on-street parking for a limited number of units (typically three or fewer) may be authorized by the Planning Commission with approval of a Use Permit. To approve such a permit the Planning Commission shall find that the off-site parking facility is reasonably accessible and secure to the tenants and is available long term; or that adequate curb parking is available adjacent to the property; or that on-site parking for the residential units is not needed.
TABLE 6.2: Downtown Automobile Parking Standards

<table>
<thead>
<tr>
<th>Residential Uses</th>
<th>Per Unit Parking Requirements</th>
</tr>
</thead>
</table>
| Single family attached, residential condominiums and apartments of two or more attached units | Studio: 1.0
1 bedroom: 1.0
2 bedrooms: 1.2
3 bedrooms: 1.3 |
| Guest parking for the above uses | Not required unless within 200 feet of a residential district, in which case guest parking shall be provided at 1 space per 5 units; or 1 space per 3 units if units take access from arterials or collectors where on-street parking is prohibited. |

<table>
<thead>
<tr>
<th>Commercial and Office Uses</th>
<th></th>
</tr>
</thead>
</table>
| All uses except hotels and motels, bed and breakfasts which shall use the Citywide standard | 3.2 spaces per 1,000 sq. ft. ground floor
2.4 spaces per 1,000 sq. ft. other floors |
| Bed and breakfast inns | No reduction in ratios. See bed and breakfast standards |
| Hotels and motels | 1 space per sleeping room plus 1 space for manager plus 1 space for every 2 employees (full or part time) plus, if hotel has convention, banquet, restaurant or meeting facilities, parking shall be provided in addition to the hotel requirement, as determined by Planning Commission, based on parking study provided by applicant and acceptable to the City. |
| Public/quasi public facilities | Standards are typically established through parking studies of the specific use. |

Notes:

Reduced on-site parking requirements for each land use category are based on the following ratio:

\[
\frac{\text{Peak Shared Parking Demand by Land Use}}{\text{Parking Requirement Per City Code by Land Use}}
\]

1. Residential peak shared parking demand (residents only) is about 70 percent lower than the number of spaces required by City code. A reduction of approximately 25 percent was applied to residential parking ratios for 2 and 3+ bedroom units.

2. Office peak shared parking demand is about 22 percent lower than the number of spaces required by City code and retail is about 47 percent lower. Since these two uses share a single set of parking ratios, the more conservative reduction was used. A reduction of 20 percent was applied to commercial and office parking ratios.

3. Hotel/motel peak shared parking demand is about 57 percent lower than the number of spaces required by City code. However, the City desires to maintain the current standard of 1 space per sleeping room and 1 space for every 2 employees.

Use Permit Required Establishing On-site Parking for Commercial Uses
On-site parking for commercial uses may only be established on commercial properties in the PE District with a Use Permit and only if the parking has been located and designed so that it does not conflict with downtown building concentrations and pedestrian orientation.

Shared Parking in Mixed-Use Developments Outside of the Parking Exempt District
Shared parking is defined as a grouping of parking spaces shared by more than one land use, which allows parking facilities to be used more efficiently. It is most effective when these land uses have significantly different peak parking characteristics that vary by time of day, day of week and/or season of the year.

The City of Napa downtown parking standards allow for a reduction to the amount of required on-site parking for a mixed-use project as long as this reduction is supported through a shared parking analysis that demonstrates that the peak parking demand for individual uses occurs at different times of day, or different days of the week, or in other ways does not occur at the same time or will not be in conflict. The analysis must also show that the total peak parking demand can be accommodated by the reduced parking supply. The Specific Plan strongly encourages shared parking outside of the PE District in mixed-use developments and among adjacent developments with varying uses, as long as the City’s development approval requirements are met.

EXISTING PUBLIC PARKING SUPPLY AND DEMAND
Existing Parking Supply
Downtown contains approximately 1,255 on-street parking spaces (1,119 spaces west of Soscol Avenue and 136 spaces east of Soscol Avenue). Off-street parking consists of City-owned surface lots and parking structures/garages available to the public. There are 705 spaces in 14 public surface parking lots and 1,371 spaces in four public parking structures for a total off-street parking supply of 2,076 spaces. There are a total of 3,331 existing on- and off-street public parking spaces in Downtown.

Existing Parking Demand
Parking demand refers to the percentage of parking spaces that are occupied at any given time of day. Generally, there is a single peak period that contains the highest number of accumulated parked vehicles. The peak period for weekdays in Downtown is from 11:00 AM to 1:00 PM. The peak period for a weekend is on Fridays from 1:00 PM to 3:00 PM. Peak weekday on-street parking occupancy is 65 percent and peak weekend occupancy is 75 percent.

Parking structures should be designed to integrate into the mixed-use core with opportunities for commercial space on the ground floor to activate the streetscape in appropriate locations.
occupancy is 59 percent. Off-street parking spaces are about 64 percent occupied during the weekday peak period and 60 percent occupied on the weekend peak. When demand for on-street and off-street parking is combined, the total parking occupancy within Downtown is 64 percent on weekday and 59 percent on weekend peak periods.

Summary of Key Findings of Existing Parking Conditions
The parking study prepared for the Specific Plan concluded that while a few individual lots and garages filled up or were near their capacity, throughout Downtown there is enough parking within the PE District to meet the demand currently generated by Downtown businesses. Approximately 40 percent of the existing public parking remains available for the demand generated by future development.

While occupancy surveys indicate there is a more than adequate number of parking spaces within Downtown to accommodate current demands based on the current levels of building occupancy, this finding is qualified by the fact that parking demand (at time of survey in July 2009) did not reflect demand from newly constructed but not yet occupied development, and that numerous building vacancies and the depressed economy are believed to have reduced parking demand to an unknown extent.

While it is important to identify the potential need for additional parking facilities to meet the future parking demand within Downtown, it is also important to effectively manage and monitor the condition and functionality of the existing parking resources over time. This is particularly evident with the Second Street Garage, where ongoing concerns regarding poor access and circulation of the aging facility highlight the eventual need for reconstruction or replacement.
SPECIFIC PLAN PARKING STRATEGY

The parking strategy within the Specific Plan is intended to remain primarily as it exists today with some minor changes and refinement. The following describes the overall parking strategy for Downtown, identifies recommended changes to current parking regulations, summarizes the estimated future parking conditions at buildout of the Specific Plan land use program, estimates future public parking needs and associated costs, and recommends refinements to the City’s funding mechanisms and parking management practices.

Guiding Principles for Parking in Downtown

The provision of adequate parking in any downtown environment is guided by a set of principles. The following are guiding principles that were used as a foundation to develop specific parking recommendations for Downtown Napa.

- Ensure that Downtown is accessible by all forms of transportation.
- Require high-quality pedestrian connections (i.e., sidewalks, lighted walkways, etc.) between public parking and all Downtown districts.
- Ensure public parking is easy to locate by providing a comprehensive arrangement of static and/or electronic signs directing motorists to available facilities.
- Provide sufficient (but not excessive) parking supply to accommodate the average peak periods and develop plans to accommodate excess parking demand during special events or seasonal peaks.
- Use parking management best practices, including pricing, to achieve a balance between accommodating those who choose, or need, to drive and encouraging transit, to preserve premium spaces for short-term use, and to encourage turnover.
- Manage, promote and enforce the short-term on-street parking supply in the Downtown core for retail shoppers and visitors.
- Maintain and expand on-street parking wherever possible, and carefully assess the trade-offs of proposals that reduce the on-street parking supply.
- Ensure a reasonable provision of long-term parking for employees (both in price and location) who are the foundation of the Downtown’s economy and vitality.
- Continue to require secure on-site parking for residents to ensure the viability and marketability of mixed-use development, but encourage developers and building management to implement parking best practices to attract households with low vehicle ownership.
- Protect adjacent residential neighborhoods from spillover parking that might result from implementing parking management strategies.
- Review and refine the City’s parking funding strategies to ensure adequate revenue to meet future construction, operations, enforcement and maintenance needs.
PARKING MANAGEMENT

This section contains parking strategies and parking management measures that may be considered for Downtown for more efficient use of parking resources. The following sections provide tools to address a variety of parking and loading-related issues and parking demand management measures that can reduce demand and extend the life of the Downtown parking supply.

Parking strategies need to accommodate multiple users of Downtown. Users include residents, residential visitors, customers (non-residential visitors, shoppers, diners), employees, delivery and public services (police, fire, refuse, etc.), and residents of the surrounding neighborhoods. The parking strategies described below identify the users that might benefit from the strategy.

Implement a Residential Permit Parking Program

This strategy is primarily to protect residential neighborhoods surrounding Downtown from spillover parking. It should be ready to implement before changes in parking fees are instituted. In addition to protecting neighborhoods surrounding Downtown, this strategy could allow residents of the PE District or Downtown Fringe Area to purchase permits to park on streets in the surrounding neighborhoods provided that there is sufficient on-street parking capacity to accommodate the needs of the neighborhood. The revenue generated by this strategy may be used to administer and enforce the residential permit parking program or may be used to fund improvements specific to the neighborhood in which the permit was sold (i.e., traffic calming, landscaping and streetscape improvements).

Option for Monthly Parking Opportunities in Public Parking Facilities

The City may consider leasing monthly parking spaces in public off-street parking facilities to residents of Downtown. This is a potentially effective strategy because peak residential parking demand is during the late evening and early morning hours when non-residential parking demand is at its lowest. This program may also allow residents to park on-street using permits. The City may consider this strategy if:

- There is an unanticipated demand for additional residential parking beyond what is being provided by private development.
- A development project cannot provide on-site parking because of a severely constrained site, or to preserve a historically significant building. If this is the case, off-site parking should be convenient to the site or a maximum of 300 feet from the site depending on the type of use.
• There is parking availability (utilization less than 85 percent) consistently in one or more municipal parking facilities.

The City currently issues over 100 parking permits for surface lots and structures to accommodate all day parking needs. Whether this program should be expanded or continued should also be considered and analyzed in the development of future parking strategies.

Allow Valet Parking
Almost exclusively used for restaurants, this strategy increases parking capacity as well as convenience for patrons. The City should continue to permit restaurants or other commercial businesses to institute valet parking through a use permit, including permission to reserve one to two parking spaces in front of the business to conduct valet operations. The City may consider charging the business a fee to compensate for the loss of the parking space(s) used in valet operations. Valet parking can utilize private parking facilities through agreements with the facilities’ owners or public parking through a license agreement with the City, if necessary. In the near term, the City may identify time-restricted on-street valet parking spaces to be used by restaurants during the mid-day (12:00 PM to 2:00 PM) for lunch and during evening (6:00 PM to 8:00 PM) for dinner. In the long term, as development intensifies in Downtown and on-street parking spaces increase in utilization, valet parking space within off-street parking lots should be identified.
Adopt Loading and Delivery Strategies for Smaller Properties

Loading areas for the delivery of goods, merchandise and supplies are essential for the economic health of Downtown. Deliveries should be accommodated through a combination of on-site loading docks as required in the Zoning Code and this Specific Plan, on-street loading zones restricted to certain hours, and permanent on-street loading areas. Larger development projects must provide on-site loading.

Smaller or otherwise constrained sites may be served by on-street loading zones that are restricted to loading in the early morning hours and afterward revert to public parking. These loading areas are project-specific, but should be selected to serve several properties. These restricted loading areas should be as convenient as possible to the service entrances of the buildings they serve, but if that is not feasible, loading zones should be on side streets or in the back of buildings. Each district in Downtown should provide several permanent on-street loading zones distributed to permit deliveries throughout the day.

Over time, the restricted loading zones should be monitored by parking enforcement and those heavily utilized may be designated as permanent loading zones. This should only be done if the loss of on-street parking spaces does not adversely affect the needs of the immediate properties.

Monitor and Revise Parking Pricing

Charging fees for public parking is one of the most effective parking demand management strategies. Variable pricing levels for different lengths of time or for peak periods can encourage the use of alternative modes of travel and reserve spaces for the short-term needs of visitors and customers. Generally, charging fees for parking is considered only after parking levels have increased to unacceptable levels and time restrictions and strong enforcement have been maximized. Ideally, the price of parking in the PE District should eventually reflect market rates. This can be achieved by gradually increasing the hourly rate of meters in prime locations close to popular destinations. Public parking garages should also charge for parking using a pricing structure that favors short-term parking close to concentrations of retail and entertainment and favors long-term parking for employees in more remote locations. Further, on-street parking should have a higher hourly rate than the rate in public structures, to encourage turnover of on-street spaces. It should be noted that implementation of paid parking would require the installation of parking meters and retrofit of existing public garages to include secure entrances and pay stations.

Monitoring the utilization of metered spaces and public off-street facilities before and after a rate change will provide feedback on the effectiveness of the pricing structure and indicate when a rate change is needed.
change is warranted (i.e., when higher rates do not affect utilization or when utilization regularly exceeds practical capacity). The process should be continued until a market rate has been achieved. A market rate is one that is consistent with similar downtowns and one that achieves the desired 85 percent occupancy goal. Initially, Downtown uses may not generate enough demand to reach 85 percent occupancy everywhere, but certain areas may experience high occupancies. During the initial period, the monitoring will examine how the rate changes parking patterns. Once rates have been established and accepted by the public, it is a matter of maintenance to update the rates when necessary to maintain the 85 percent occupancy goal as development continues in Downtown.

As development activity increases and short-term demand in the Downtown core reaches saturation, the City may consider the use of Smart Meters, which provide variable pricing based on time of day and current demand, with a goal to maintain 85 percent occupancy for visitor and customer convenience. Further, modern meter equipment allows “meter stations” that take debit or credit cards, improving revenue collection and enforcement.

Real-time parking wayfinding has been used for nearly two decades in many large and small European communities and has been documented to better manage existing spaces and reduce on-street traffic congestion.

Inadequate user information can lead to confusion and incorrect perceptions regarding the availability of parking in Downtown. Visitors need information on parking location, price (when applicable), and whether there are any time restrictions. Information can be disseminated through maps, brochures, and websites. Such information improves user convenience and security, increases the utilization of parking facilities and locations, and dispels misconceptions about parking availability. User information and promotion is often funded and maintained by the Chamber of Commerce or Downtown Business Association. Parking guidance systems, or at least real-time parking availability signs at garage entrances, are the most efficient way to guide motorists to parking facilities. Parking wayfinding, along with real-time availability information to available parking, is preferred since many motorists visiting Downtown are unfamiliar with the area and would benefit from directional information to available parking.

Promotion

Inadequate user information can lead to confusion and incorrect perceptions regarding the availability of parking in Downtown. Visitors need information on parking location, price (when applicable), and whether there are any time restrictions. Information can be disseminated through maps, brochures, and websites. Such information improves user convenience and security, increases the utilization of parking facilities and locations, and dispels misconceptions about parking availability. User information and promotion is often funded and maintained by the Chamber of Commerce or Downtown Business Association. Parking guidance systems, or at least real-time parking availability signs at garage entrances, are the most efficient way to guide motorists to parking facilities. Parking wayfinding, along with real-time availability information to available parking, is preferred since many motorists visiting Downtown are unfamiliar with the area and would benefit from directional information to available parking.

Parking guidance systems, or at least real-time parking availability signs at garage entrances, are the most efficient way to guide motorists to parking facilities. Parking wayfinding, along with real-time availability information to available parking, is preferred since many motorists visiting Downtown are unfamiliar with the area and would benefit from directional information to available parking.
FUTURE PARKING SUPPLY AND DEMAND

The Specific Plan includes a development forecast for buildout of Downtown. The forecast was used to estimate the parking demand and to determine future public parking supply based on the standards and regulations in the Specific Plan. The following summarizes the estimated parking demand and associated required public parking, and presents the estimated cost and location of a future structure.

Estimated Parking Demand with Buildout of the Specific Plan Development Plan

The demand for public parking is estimated with a shared parking analysis of the Downtown’s various districts. The analysis determines the amount of public parking that will be required to meet demand. Demand for public parking facilities includes:

- Existing parking demand from development that will remain, plus
- Parking demand generated from buildout of the Specific Plan’s development program, minus
- Parking demand from existing land uses that will be removed to make way for new development.

Within the PE District, parking demand is satisfied primarily with public parking and supplemented by private parking. The analysis assumes an allocation between private (on-site) and public (off-site) parking. Outside of the PE District most of the parking demand is met with private on-site parking and a smaller fraction uses public on-street spaces.

The analysis uses the methodology and parking demand assumptions customarily used in the parking industry and published by the Institute of Transportation Engineers (ITE) and the Urban Land Institute (ULI). Parking demand methods and assumptions include:

- Parking demand rates (the number of accumulated parked cars expected for a specific type and amount of land use at its peak generation on a weekday or weekend day) are from the ITE’s Parking Generation, 4th Edition. Parking Generation is a standard reference used by jurisdictions throughout the country for the estimation of parking demand potential of proposed developments.
- Demand rates are used to estimate the addition of parking demand from new development and the subtraction of parking demand from existing uses that are proposed to be redeveloped.
- 100 percent of the City code-required parking would be provided on-site for residential uses within the PE District and all uses outside of the PE District, except smaller development sites in the Oxbow District where it is infeasible to provide on-site parking. Demand generated by the small development sites will rely on public parking.
Table 6.3: Parking Supply/Demand at Buildout of Specific Plan summarizes the future parking supply and demand in Downtown with buildout of the Specific Plan’s development program. As shown in the table, the parking demand analysis estimated a peak weekday demand for public parking (on-street and off-street lots and garages) of 1,889 vehicles within the PE District, 867 vehicles in the Downtown Fringe Area and 162 vehicles in the Oxbow District, or a total weekday demand of 2,918 public parking spaces. Refer to the Specific Plan EIR for a comprehensive description of the parking analysis.

The total peak off-site future parking demand of 2,918 spaces does not exceed the total future parking supply of 3,078 spaces within Downtown. However, the total demand exceeds the practical capacity (85 percent) of the off-site parking supply. Further, the future parking demand for the Oxbow District and the PE District exceeds future parking supply, resulting in a parking deficit within these areas.

TABLE 6.3: Parking Supply/Demand at Buildout of Specific Plan

<table>
<thead>
<tr>
<th>District</th>
<th>Future Off-Site Parking Supply</th>
<th>Future Peak Off-Site Parking Demand</th>
<th>Future Surplus/Deficit</th>
<th>% Occup.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On-Street</td>
<td>Off-Street</td>
<td>Total</td>
<td>Existing Demand</td>
</tr>
<tr>
<td>Parking Exempt District</td>
<td>484</td>
<td>1,296</td>
<td>1,780</td>
<td>1,320</td>
</tr>
<tr>
<td>Downtown Fringe Area</td>
<td>602</td>
<td>560</td>
<td>1,162</td>
<td>668</td>
</tr>
<tr>
<td>East of Soscol Ave / Oxbow District</td>
<td>136</td>
<td>0</td>
<td>136</td>
<td>73</td>
</tr>
<tr>
<td>Total Downtown</td>
<td>1,222</td>
<td>1,856</td>
<td>3,078</td>
<td>2,061</td>
</tr>
</tbody>
</table>

Notes:
Period of Future Peak Parking Demand = Weekdays (Non-Friday) between 1:00 PM – 3:00 PM.
Parking occupancy greater than 85 percent indicates that the parking demand exceeds “practical capacity” which is considered to be the highest peak parking occupancy to maintain an effective and efficient parking system.

4 Note that the baseline future public parking supply is less than existing parking supply due to a loss of parking spaces in conjunction with the Oxbow Bypass project.

5 The practical capacity for parking is defined at 85 percent to 90 percent utilization of parking spaces. Keeping about 10 percent to 15 percent of the spaces vacant provides a cushion in excess of necessary parking spaces to allow for the dynamics of parking (i.e., people circulating in search of a space, and moving in and out of parking spaces). When occupancy exceeds the practical capacity, drivers will experience delays and frustration while searching for a parking space, as well as contribute to area traffic congestion while circling the block looking for parking.
Additional public parking is needed to accommodate the future peak parking demand and remain within the practical capacity requirements (85 percent occupancy) of Downtown. The following recommendations would satisfy the area's needs:

- The Specific Plan's primary recommendation is to construct between 300 and 400 parking spaces within Downtown west of Soscol Avenue in order to accommodate the future parking demand with buildout of the Planning Area and the loss of some public parking due to the Oxbow Bypass project. A four-level parking structure on one half of a typical block in Downtown would provide approximately 373 to 400 spaces. The general vicinity of the intersection of Pearl Street and West Street within the PE District has been identified as a potential location for a future parking structure. This area is ideally located to serve the parking needs of the areas where future parking demand is highest.

- Evaluate the potential for expanding the PE boundary.

- Adjust the Parking Impact Fee to more closely reflect the actual cost of providing parking.

- Provide an additional 75 to 100 public parking spaces in the Oxbow District. A potential strategy is to seek a public/private venture to construct a parking structure with publicly available spaces as part of redevelopment of the area. A centrally located public/private parking facility within the District allows the maximization of developable land on the District's smaller parcels, avoids the need and cost of aggregating property for a large project, and improves the pedestrian environment. In the interim, if demand starts to exceed supply, a temporary strategy includes investigating the option of leasing the County Corp Yard or another surface parking site in the area.

- As a longer term opportunity, the City may consider redevelopment of the Second Street Garage. With completion of the County’s plans to construct new offices on Third Street, the Carrither’s Building may
become surplus and the City would have a first right to acquire the property. This is an opportunity to work with a developer to redevelop the site and include public parking.

Based on the average cost of $32,000 per space to construct a new structured parking facility in Downtown, the cost of the recommended new 300 to 400 space parking structure within Downtown west of Soscol Avenue is estimated at approximately $12 million (excluding land costs) to $14.3 million (including costs of land acquisition). Two potential funding options that may be pursued to fund the recommended structure include:

- The creation of a new assessment district applicable only to new/redeveloped non-residential properties within the PE District to fund the exact cost of the structure recommended above. If adopted, this would replace the current Parking Impact Fee with the assessment district. The current Business License Tax assessment could be continued for operations and maintenance of existing facilities.
- The continuation of the current Parking Impact Fee practice, but adjustment of the fee to match the actual cost of new parking and include land acquisition in the fee. This practice could begin immediately, with a gradual increase from the current fee to reach the desired amount over a period of three to five years. Unlike assessment fees, parking impact fees cannot be used to pay operation and maintenance costs of existing or planned parking facilities.

The cost of the recommended new parking and options for funding are discussed in further detail in Chapter 8 – Implementation and in Appendix C: Transportation Analysis.

PARKING MANAGEMENT RECOMMENDED ACTIONS

This section summarizes the strategies to support the implementation of the Specific Plan’s recommendations for new public parking facilities and parking strategies for effectively managing the existing and future parking system as the Specific Plan’s development program builds out.

1. Construct a 300 to 400 space parking structure within the PE District, potentially within the vicinity of the intersection of Pearl Street and West Street. Begin construction of this facility when the peak occupancy of public parking consistently remains near 85 percent or when a site becomes available.

2. Seek a public/private venture to construct a parking structure with publicly available spaces in the Oxbow area. In the interim, implement a temporary strategy of leasing existing surface parking lots on the COPIA property south of First Street. Evaluate and expand on-street parking in the Oxbow District wherever it is feasible.

3. Acquire the Carrither’s Building property when the County declares it surplus and reserve the site for redevelopment in conjunction with new private development and/or replacement of the Second Street Garage.

4. Continue the current impact fee practice, but adjust the fee to more closely match the actual cost of new parking and include land acquisition.

6 The source of the parking structure cost per space is the recent construction of the County’s Fifth Street Garage. The per space estimate includes construction and “soft” costs of planning and design, construction administration, and contingency, but does not include the cost of property acquisition.
acquisition in the fee. Beginning immediately, gradually increase the current fee to reach the desired amount over a period of three to five years.

5. Evaluate the feasibility of creating an assessment district applicable only to new/redeveloped non-residential properties within the PE District to fund the exact cost of the structure recommended above. If adopted, replace the current Parking Impact Fee with the assessment district. Continue the current business license tax assessment for operations and maintenance of existing facilities.

6. Establish a residential permit parking program in the neighborhoods surrounding Downtown, if needed. Implement the program using the City’s current policies and procedures. The program may need to be fully or partially funded by permit fees to cover the costs of enforcement.

7. Maintain the economic vitality of the Downtown retail and entertainment uses by planning and implementing on-street commercial truck loading zones with time restrictions in strategic locations. Implement permanent on-street loading areas when concentrations of delivery-reliant land uses warrant all day loading. Establish truck parking and loading areas to reduce loading interference with traffic flow or disruption of the pedestrian environment.

8. When parking levels increase to unacceptable levels with time restrictions and strong enforcement, consider adopting policies that institute parking pricing strategies. Develop a parking pricing and adjustment policy that monitors and sets variable pricing levels for different lengths of time and peak periods to encourage the use of alternative modes of travel and reserve spaces for the short-term needs of visitors and customers. Ideally, the price of parking in the PE District should eventually reflect market rates.

9. Consider adopting the recommended Downtown parking ratios presented in Table 6.2 to avoid the costs of providing excess parking and to further support the Transportation Demand Management and parking management strategies presented in the Specific Plan.

10. When parking demand reaches approximately 85 percent, install Smart Meters that provide variable pricing based on time of day and current demand with a goal to maintain 85 percent occupancy for visitor and customer convenience.

11. Work with Downtown stakeholders and associations to review, refine and disseminate parking information; promote Downtown parking; and develop a wayfinding system. Eventually implement a parking guidance system, with at least real-time parking availability signs at garage entrances.

12. Encourage and require, where appropriate, development to provide cross access easements between private parking lots to increase shared parking opportunities and facilitate informal connections between parking lots and buildings.